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Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. It has been 
implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. We 
characterized codon usage across 1,154 strains from 1,051 species from the fungal subphylum Saccharomycotina to gain insight into the 
biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns. We found a general preference 
for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is distinct 
between the 12 orders to such a degree that yeasts can be classified with an accuracy >90% using a machine learning algorithm. 
We also characterized the degree to which codon usage bias is impacted by translational selection. We found it was influenced by 
a combination of features, including the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed 
an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs that decode CGN co
dons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and co
don evolution suggests that avoidance of the CGN codons is associated with a decline in arginine tRNA function. Consistent with 
previous findings, codon usage bias within the Saccharomycotina is shaped by genomic features and GC bias. However, we find cases 
of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution 
of specific codons.
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Introduction
The genetic code is degenerate, and all but 2 amino acids are en
coded by multiple synonymous codons. It is consistently observed 

that the use of synonymous codons is biased within genes, between 

genes within a genome and between species (Ikemura 1985; Plotkin 

and Kudla 2011). The unequal use of synonymous codons is known 

as codon usage bias (CUB) and has been observed widely across 

organisms (Ikemura 1985). Some of these biases are associated 

with the functional properties of codons. Generally, the relative 

frequency of synonymous codons is proportional to the number 
of available tRNAs with a corresponding anticodon, which facili
tates translation (Grantham 1978). Transcripts containing codons 
decoded by abundant tRNAs are also frequently expressed at a 
higher level (Sharp et al. 1986). Codon usage bias has been found 
to have a functional role in many cellular processes, including 
mRNA stability (Radhakrishnan et al. 2016), transcriptional control 
(Coghlan and Wolfe 2000), protein folding (Zhou et al. 2015), chro
matin availability (Zhao et al. 2021), and ribosome dynamics 
(Yu et al. 2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae207/7746026 by guest on 02 N

ovem
ber 2024

https://orcid.org/0000-0001-5765-1419
https://orcid.org/0000-0002-2879-6317
https://orcid.org/0000-0001-5088-7461
https://orcid.org/0000-0002-7248-6551
https://orcid.org/0000-0003-0068-6703
mailto:alabell3@charlotte.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/g3journal/jkae207


The involvement of codon usage bias in diverse cellular pro
cesses suggests that codon usage is under natural selection. 
Natural selection acting on codon usage is typically attributed to 
translational selection, a form of adaptation associated with in
creased translational efficiency in highly expressed genes accom
plished by tuning CUB to the most abundant tRNAs (dos Reis et al. 
2004). Nonadaptive forces such as GC-biased gene conversion, 
mutational bias, and genetic drift also have a signature effect on 
the nucleotide composition landscape. GC-biased gene conver
sion is a process that generally influences eukaryotes and is due 
to recombination that prefers the transmission of GC alleles, 
thus increasing the GC content (Lesecque et al. 2013). However, 
biased gene conversion may not significantly impact GC content 
in some species, such as Saccharomyces cerevisiae (Liu et al. 2018). 
Mutational biases can also impact global GC composition. 
Mutational biases are driven by differential transition and trans
version rates (Zhu et al. 2014), mutational pressure toward AT con
tent driven by the deamination of cytosine to uracil (Lynch et al. 
2008), and replication strand bias (Pavlov et al. 2002). Finally, gen
etic drift decreases selection efficiency, including translational se
lection on codon usage (Galtier et al. 2018).

The relative degree to which adaptive and nonadaptive forces 
shape codon usage bias differs across the tree of life. In some spe
cies, especially those with small population sizes like large mam
mals and reptiles, neutral forces are thought to predominately 
shape codon usage biases (Galtier et al. 2018). In this case, codon 
usage is highly correlated with global GC content and is not pre
dictive of gene expression (dos Reis et al. 2004). Other species 
like Escherichia coli, however, exhibit a strong signature of transla
tional selection such that codon composition is highly predictive 
of gene expression level (Boel et al. 2016). Methods have been de
veloped to disentangle these forces to assess the relative contribu
tion of translational selection on genomic codon usage bias 
(dos Reis et al. 2004; Gilchrist et al. 2015; Landerer et al. 2018). 
These methods have found a wide range of translational selection 
levels across organisms (dos Reis et al. 2004). This variation has 
been attributed to factors such as genome size, total number of 
genomic tRNAs (dos Reis et al. 2004), and effective population 
size (Galtier et al. 2018). These features, however, do not fully ex
plain the observed variation, as numerous exceptions exist 
(LaBella et al. 2019). It remains to be seen if other metabolic, 
phenotypic, or genomic traits impact the degree of translational 
selection on CUB or CUB itself.

The fungal subphylum Saccharomycotina, 1 of 3 subphyla in 
the phylum Ascomycota, is an excellent model system for study
ing codon usage evolution (LaBella et al. 2019; 2021; Nalabothu 
et al. 2023). Codon usage in the Saccharomycotina is among the 
most unusual in eukaryotes as it harbors three orders (Serinales, 
Alaninales, and Ascoideales) that have undergone nuclear codon 
reassignments in which the CTG codon encodes for serine or ala
nine, instead of leucine (Muhlhausen et al. 2016; Riley et al. 2016; 
Wada and Ito 2023). The extensive genomic diversity of these 
yeasts provides insight into the evolution of codon usage and pos
sible factors shaping them. Previous research on a subset of the 
subphylum of Saccharomycotina (332 or fewer yeasts) has re
vealed that most, but not all, species within this group are subject 
to high levels of translational selection (LaBella et al. 2019; Cope 
and Shah 2022; Wint et al. 2022). This work found that genomic 
tRNA copy number was the most robustly associated with levels 
of translational selection on codon usage, with the highest levels 
occurring at intermediate tRNA levels (LaBella et al. 2019). 
Surprisingly, genome size was not highly correlated with levels 
of translational selection. There are likely other forces shaping 

codon usage bias within this diverse subphylum. These findings 
warrant additional investigation in the entire yeast subphylum, 
which the Y1000+ Project has recently made possible through 
the generation of genomic and phenotypic characterization of 
1,154 yeast strains from 1,051 species—nearly all known species 
of yeasts (Opulente et al. 2024).

To understand the evolution of codon usage bias in 
Saccharomycotina, we analyzed the genomic-wide codon usage 
metrics and their relationship to phenotypic or genomic features 
across the subphylum. This analysis builds on previous work 
(LaBella et al. 2019) by more than tripling the species number, in
cluding machine learning analysis, and includes metabolic niche 
breadth data. We measured relative synonymous codon usage 
(RSCU), which reflects codon preference, and the association be
tween RSCU and various genomic features. Across the subphy
lum, we found a general preference toward AT-ending codons, 
but there were significant differences in codon usage between 
species. A phylogenetic principal component analysis (pPCA) re
vealed distinct patterns of RSCU values that differentiated the 
Serinales and Dipodascales from the rest of the subphylum. A ran
dom forest classifier was able to classify strains into their taxo
nomic orders with high accuracy based solely on RSCU values, 
indicating the presence of distinct patterns in codon usage pat
terns in the subphylum. Further phylogenetic statistical analysis 
on codon usage resulted in significant correlations with GC con
tent metrics but also revealed intriguing correlations with specific 
genomic features. Significant correlations were found between 
translational selection levels (measured by S-value) and tRNA 
count, assembly metrics, and the number of protein-coding se
quences but not with the niche breadth phenotypes. We also con
ducted an in-depth analysis of RSCU values of CGN codons, which 
revealed that no tRNA was computationally predicted to decode 
CGN codons in the Saccharomycodales. The Saccharomycodales 
contained 23 species (out of 24) that were predicted to lack 
CGN-decoding tRNA genes. We conducted additional analyses 
on gene expression, tRNA alignments, and conserved arginine 
sites, further suggesting the loss of functional CGN codons. This 
analysis of codon usage throughout the subphylum highlights 
the diversity of codon usage strategies and identifies some of the 
genomic features that may constrain this diversity.

Materials and methods
Codon usage data and metrics
The protein-coding sequence annotations of 1,154 yeast strains 
from 1,051 species were collected from a previous study from 
the Y1000+ Project (http://y1000plus.org) of the yeast genomes 
in the subphylum Saccharomycotina (Supplementary Table 1;
Opulente et al. 2024). Mitochondrial sequences were previously fil
tered from these genomes, and the annotations, therefore, do not 
contain mitochondrial coding sequences. Codon calculations 
were generated through the sequence analysis tool EMBOSS 
v6.6.0.0 (Rice et al. 2000), which calculated codon frequencies, per
centages, and counts for every coding sequence in each yeast 
strain. Most codon analysis software does not include all possible 
yeast nuclear translation tables and, therefore, is inaccurate for 
the Saccharomycotina. To address this, the RSCU for every yeast 
strain was calculated by in-house scripts (https://github.com/ 
The-Lab-LaBella/RSCU_Calculation_Analysis) that accounted for 
the nuclear codon reassignments in the Serinales, Alaninales, 
and Ascoideales. The RSCU is the observed number of occurrences 
of a synonymous codon divided by the expected number of occur
rences if codon usage was random (Sharp et al. 1986). We calculate 
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RSCU by multiplying the frequency of each codon by the number 
of synonymous codons for that amino acid. For example, if there 
are 100 valine codons and we observe there are 60 GTT codons, 
the RSCU would be 2.4 (60/100*4). The RSCU values for every 
protein-coding sequence were used to calculate each genome’s 
genome-wide average RSCU values.

To estimate the level of translational selection acting on codon 
usage in our yeast genomes, we applied the S-test to calculate the 
S-value proposed by dos dos Reis et al. (2004) using the tRNA adap
tation index (tAI) package in R. We used this package to generate 
tAI values for every gene. The S-value for each genome was then 
calculated as the correlation between tAI and a combination of 
the synonymous third codon position GC content (GC3s) and the 
effective number of codons. A correlation (S-value) of 1 suggests 
that codon usage is influenced by translational selection across 
the genome. This method was chosen because we could conduct 
high-throughput analysis on the command line instead of a 
graphical user interface. Other methods have shown similar 
trends in detecting selection on codon usage in the yeasts 
(Landerer et al. 2018).

tRNA analysis
tRNAscan-SE 2.0.9 (Chan et al. 2021) was used to predict tRNAs in 
the genome for each strain using the standard eukaryotic para
meters. We generated a filtered tRNAscan-SE dataset in which 
we removed pseudogenes, tRNAs lacking isotypes, and tRNAs 
containing mismatches between anticodon and predicted isotype. 
Serine or alanine tRNAs with the CAG anticodon were included for 
the Serinales, Alaninales, and Ascoideales as the orders have 
undergone a reassignment of the canonical codon (CUG) for leu
cine to serine [Serinales (Santos and Tuite 1995) and Ascoideales 
(Krassowski et al. 2018)] or alanine [Alaninales (Muhlhausen 
et al. 2016; Riley et al. 2016)]. After filtering, the total tRNA-ome 
size was calculated as the sum of all tRNAs. We conducted add
itional analyses on the tRNAs of Saccharomycodales yeasts, spe
cifically analyses of the arginine-decoding tRNAs. First, we 
analyzed the mitochondrial tRNA content of several yeast species 
in the Saccharomycodales. The mitochondrial genomes were ob
tained from a recent study (Wolters et al. 2023), and they were ana
lyzed for tRNA content using tRNA-scan with the organelle option.

The conservation of Saccharomycodales arginine tRNAs was 
also assessed using the tRNAviz web browser (Lin et al. 2019). 
In addition to visualization, tRNAviz calculates a penalty score 
for each position in the supplied tRNAs. Scores range from 0 (iden
tical to the reference) to −15, indicating a highly divergent site. 
The reference set used in this analysis was the pre-computed 
Saccharomycotina dataset.

Annotations of tRNA modification enzymes were obtained 
from KEGG (Kanehisa and Goto 2000) annotations previously con
ducted (Opulente et al. 2024). The annotations examined were 
KEGG Ortholog groups K15440 (TAD1), K15441 (TAD2), and 
K15442 (TAD3). They were examined manually to identify any an
notation errors.

Genomic and phenotypic traits of yeasts
Next, we aimed to identify genomic and phenotypic traits that 
may influence levels of codon usage bias and translational selec
tion in yeasts. To do this, we used a variety of yeast traits obtained 
from and detailed in the publication of the genomes (Opulente 
et al. 2024). Genomic traits analyzed were GC content metrics, 
tRNA-ome size, S-value, genome size, genome assembly metrics, 
BUSCO completeness metrics, and number of protein-coding se
quences. Phenotypic traits analyzed were metabolic niche 

breadth (Opulente et al. 2024). Metabolic niche breadth is the total 
number of carbon or nitrogen substrates on which a yeast strain 
can grow.

Visualization and phylogenetic statistical 
analyses
The genome-wide average RSCU values across the subphylum 
were analyzed with hierarchical clustering performed using the 
ComplexHeatmap package (Gu et al. 2016). To decipher patterns 
and covariance across strains in their codon usage variation, a 
pPCA was performed in R using the phytools package (Revell 
2024). A pPCA was used to take into account the nonindependence 
of closely related species. The phylogeny of all 1,154 yeasts, which 
was constructed using maximum likelihood analysis of a concate
nated alignment of 1,403 single-copy orthologs, was obtained 
from the previous study (Opulente et al. 2024). Similarly, phylo
genetic generalized least squares (PGLS) and phylogenetic inde
pendent contrasts (PICs) were used to estimate correlations 
between biological features, genomic features, and RSCU. The 
RSCU vs RSCU analysis was conducted under a PGLS with max
imum likelihood estimation of Pagel’s lambda in the caper v1.7.3 
package (Orme et al. 2013). In cases where the lambda estimation 
failed, possibly due to a maximum likelihood outside the bounds 
of 1 × 10−6 and 1, it was set to 1 to ensure the most conservative 
analysis. The yeast feature vs yeast feature analysis was also con
ducted using the same PGLS method. In the feature analysis, 2 
genomes were dropped due to naming issues: genome names 
yHMPu5000026270_Candida_sp._SPAdes, 
yHMPu5000034970_Candida_sp._SPAdes. Due to differences in 
scale, the feature vs RSCU analysis was conducted using a PIC in 
the ape v5.7-1 package (Paradis and Schliep 2019). Strains without 
metabolic breadth measurements were removed before phylo
genetic comparative analysis.

RSCU random forest classifier
To determine if yeast strains can be classified by codon usage, a 
random forest classifier model was created to determine the order 
of a particular yeast strain based solely on their genome-wide 
average RSCU values. The model was built from the R package 
randomForest v.4.7-1.1 (Liaw and Wiener 2002) with a matrix 
comprising the genome-wide average RSCU values from 59 co
dons for each strain. The model was trained with 70% of the 
data, and 30% was withheld for testing. The trained model in
cluded information regarding the significant variables (codons) 
in classifying yeast strains to orders and error rate stabilization.

Gene expression analysis
We conducted mRNA-sequencing to verify the presence of rare 
codons in the expressed genes of Saccharomycodales (BioProject 
PRJNA1144926; Accessions SAMN43045963, SAMN43045964, 
SAMN43045965.) Triplicate cultures of Hanseniaspora occidentalis 
var. occidentals and Hanseniaspora uvarum were grown for 18 h in 
20 mL rich YPD medium (yeast extract, peptone, 2% glucose) in 
a room-temperature shaker at 250 rpm. Cell pellets were flash- 
frozen and stored at −80°C. mRNA was isolated using the 
NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) with 
the NEBNext Ultra II Directional RNA Library Prep kit (NEB). One 
of the 3 H. occidentals var. occidentals libraries failed, leaving only 
2 replicates for sequencing. Sequencing was performed at the 
University of Wisconsin–Madison Biotechnology Center. 
Paired-end reads were trimmed and deduplicated using fastp 
v.0.20.1 (Chen 2023). A guided assembly was conducted using 
HISAT2 v2.2.1 (Kim et al. 2019) to align the sequence reads against 
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their respective reference draft genomes, both of which were re
trieved from the Y1000+ Project (Opulente et al. 2024). The result
ing alignment files were processed through Stringtie v2.2.1 
(Shumate et al. 2022) for transcript annotation from their respect
ive reference species annotation files, followed by extracting the 
protein-coding sequences from the reference genomes of each 
replicate annotation file into FASTA files using TransDecoder 
v5.5.0. Putative transcript functions were assigned using the 
NCBI Blast web search (Madden 2013).

Conserved arginine site analysis
Our analyses revealed an extreme bias in arginine codons in the 
Saccharomycodales. Therefore, we explored the evolutionary 
context of conserved arginine positions within the genomes. 
We identified highly conserved arginine amino acid positions in 
the 1,403 single-copy orthologs previously used to build the 
Saccharomycotina phylogeny (Opulente et al. 2024). The DNA se
quences of these orthologs were translated into amino acid se
quences using EMBOSS transeq (Rice et al. 2000) and then aligned 
using mafft v7.273 (Katoh et al. 2002) with the “fftnsi” settings. 
The DNA-coding sequences were then aligned by codon using the 
protein alignment as a reference using a custom script available 
on the Figshare repository. Conserved arginine positions, defined 
by a simple majority of sequences, were identified in the amino 
acid alignments using the EMBOSS cons function. We then focused 
on the Saccharomycodales, the Saccharomycodales (the sister or
der to the Saccharomycodales), and the Phaffomycetales (an out
group). We identified sites in the alignment where 80% or more of 
the amino acids were arginine, and the exact codon was conserved 
within each order at 80% or more. This procedure identified highly 
conserved arginine positions with highly conserved arginine co
dons. This allowed us to identify patterns of arginine codon usage 
within this group.

Results and discussion
Codon usage variation across the subphylum
Our previous work identified significant variation in codon usage 
in 332 strains of the yeast subphylum (LaBella et al. 2019). Here, 
we have more than tripled the sampling within the subphylum. 
First, we calculated the strain-level average RSCU values for 
the 59 degenerate codons. Hierarchical clustering revealed pat
terns of codon preference throughout the subphylum (Fig. 1; 
Supplementary Table 2 and Fig. 1). We observed a general prefer
ence (RSCU > 1) for A/T-ending codons, while G/C-ending codons 
were unpreferred (RSCU < 1). However, there were notable devia
tions from the general patterns in RSCU values. Specifically, the 
codon TTG, which codes for leucine, was grouped among the pre
ferred A/T-ending codons and was the only G/C-ending codon 
generally preferred. Another observation was that the A/ 
T-ending codons of CTT (leucine), CGT (arginine), GTA (valine), 
ATA (isoleucine), CTA (leucine), and CGA (arginine) were among 
the unpreferred codons in the subphylum. Other RSCU patterns 
were specific to 1 or a few orders of yeasts. The codon AGA (argin
ine) exhibited an extreme preference throughout all the orders ex
cept for Lipomycetales, Trigonopsidales, and Dipodascales. A 
similar pattern was observed with the TTG codon. The codon 
TTA was highly variable across the subphylum and exhibited ex
treme preferences (preferred and unpreferred).

We also investigated the correlation between RSCU and other 
codon-associated traits, including synonymous GC3 (GC3 s) com
position, translational selection (S-value), and tRNA-ome size 
(Fig. 1; Supplementary Tables 1 and 2). These traits represent 

various factors influencing codon usage variation across the 
subphylum. S-value (a measure of translational selection) varies 
significantly across the subphylum (Fig. 1). A high level of transla
tional selection on codon usage within a genome is characterized 
by a high correlation between codon adaptation to genomic tRNA 
numbers (tAI) and compositional bias. Therefore, a value of 1 in
dicates a perfect correlation and a high inferred level of transla
tional selection on codon usage. An S-value of ∼0.5 indicates an 
intermediate level of translational selection. Across the yeast sub
phylum, we observed S-values ranging from a low of −0.015 to a 
high of 0.931 (mean = 0.73, median = 0.76; Supplementary 
Table 1). GC composition, which can influence codon usage bias 
in a nonselective way, is also highly variable across yeasts 
(Supplementary Table 1). We observed synonymous GC3 values 
from a low of 4.7% to a high of 91.3%. The average across the gen
omes was 42.36% and a median of 43%. The tRNA-ome is another 
source of codon usage evolution as the repertoire of tRNA copy 
number is directly implicated in the presence of translation 
selection (dos Reis et al. 2004). The median tRNA-ome in the 
subphylum was 208 tRNAs, ranging from a minimum of 49 
tRNAs to a maximum of 1,589 tRNAs. Candida lidongshanica and 
Aciculoconidium aculeatum from the Serinales have an unusually 
large predicted tRNA-ome with 1,589 tRNAs and 1,037 tRNAs, re
spectively. Further analysis of the number of distinct anticodon 
types in each strain revealed that only 1 species, Martiniozyma abie
sophila in the Pichiales, violates the theoretical minimum of 30 
anticodon types (Marck and Grosjean 2002) by containing only 
28 nuclear anticodon types. The tRNA content analyses present 
here are limited by the references used to model tRNAs within 
tRNAscan-SE and potentially incomplete genomic sequences. 
Additional experimental work is required to fully elucidate the ex
pressed tRNA content across the yeast subphylum.

RSCU patterns are a defining feature of yeast 
orders
To examine interspecies RSCU codon usage variation, we con
ducted a pPCA. The pPCA revealed that most of the variation 
(63.56%; Fig. 2) between species is driven by G/C- and A/ 
T-ending codons, which is consistent with previous analyses 
(LaBella et al. 2019). The second principal component (11.96%), 
which differentiates the Serinales/Ascoideales and Dipodascales/ 
Lipomycetales, is driven by a set of codons that include TTG, CTT, 
CTA, CTG, AGT, TCA, and TCT. In particular, the usage of TTG, 
CTT, and CTA (all leucine codons) separates and clusters the 
Serinales and Ascoideales from the rest. This reflects the avoidance 
of the reassigned CTG codon in these orders. The Dipodascales also 
exhibited unique clustering driven primarily by codon preferences 
for CTG (leucine codon), AGT, TCA, and TCT (serine codons). An in
teresting deviation was seen for Dipodascopsis tothii (order 
Lipomycetales), which is separate from all the other species in the 
subphylum. Dipodascopsis tothii exhibits a long-branch length from 
its relatives and an extremely high GC3 content (91%). The results 
of this species indicate that it has undergone a unique trajectory 
in its codon usage that is different from all the rest.

The application of machine learning to genomic data is emer
ging as a powerful tool for studying yeast traits and evolution 
(Harrison et al. 2024; Opulente et al. 2024). The pPCA suggested 
that codon usage can distinguish some, but not all, yeast orders. 
Machine learning methods, however, can pick up patterns that 
may be missed in a PCA. To test if codon usage is a distinguishing 
feature of yeast orders, we constructed a random forest classifier 
model to classify the order of yeast strains solely on their 
genome-wide RSCU values (Supplementary Table 2). The model 
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accurately classified 90.38% of the training data and 93.29% of 
the test data (30% previously withheld), which indicates that 
CUB is generally sufficient to differentiate yeast orders 
(Supplementary Fig. 2). The model was interrogated for the 
most important variables used for classification using the 
mean decrease Gini index (Supplementary Table 3). The most 
important variable in the model was the codon CTA (leucine), 
followed by the codons TTG (leucine), AGA (arginine), CTG (leu
cine), GTA (valine), and CGA (arginine). The relatively high im
portance of the CTA codon is consistent with the finding that it 
is a rare case of an A/T-ending codon that is generally unpre
ferred throughout the subphylum. Moreover, this highlights 

that the reassignment of the CTG codon in 3 orders is a defining 
feature of these species. The random forest algorithm could dis
tinguish between genomes belonging to different orders using 
only the 59 RSCU metrics. The RSCU values, therefore, likely 
contain significant phylogenetic information.

Codon usage biases are correlated with numerous 
genomic features
Codon usage bias may be shaped by various genomic and eco
logical factors over the course of evolution. To identify factors 
shaping codon usage bias of specific codons and overall levels 
of translational selection, we conducted numerous PGLS 

Fig. 1. Variation of codon-associated metrics across the Saccharomycotina subphylum. The S-value is a measure of translational selection on codon 
usage that varies from no selection (0) to high levels of selection (1). The synonymous GC3s and total genomic tRNA count are also shown. Representative 
RSCU and individual tRNA counts for arginine are also shown. The RSCU and counts of decoding tRNAs vary widely across the phylogeny.
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regressions. These regressions allowed us to account for the fact 
that our observations share ancestry and are, therefore, a nonran
dom sample.

First, we explored what factors may shape the usage of specific 
codons by correlating genome-level RSCU values with genomic 
features, such as other RSCU values, GC content, and tRNA-ome 
size (Supplementary Table 4). We identified 13 codons strongly as
sociated with GC content and tRNA-ome size. Many of these co
dons were previously identified in the PCA analysis (CTG, AGT, 
TCT, TTA, and CTT; Supplementary Fig. 3). We also tested for 
codon-to-codon correlations by testing 1,830 pairwise combina
tions of RSCU (Supplementary Table 5 and Fig. 4). After multiple 
test corrections, 1,785 pairwise combinations were significant at 
P < 0.05. Of the significant comparisons, 1,740 had the expected 
correlation between G/C- and A/T-ending codons—they were 
positively correlated within A/T or G/C comparison and negatively 
correlated for A/T vs G/C comparisons. There were 23 pairwise 
comparisons that violated our expectation that G/C- and A/ 
T-ending codons should not exhibit positive correlations in 
RSCU. Comparisons with high slopes include a positive correlation 
between TTG (leucine) and CTA (leucine; slope = 1.50) and between 
AGG (arginine) and CTA (leucine; slope = 0.53). Additionally, 22 
comparisons between A/T- or G/C-ending codons were not positive
ly correlated. For example, negative correlations within groups in
clude TCA (serine) and CTA (leucine; slope = −1.20) and AGA 
(arginine) and CGA (arginine; slope = −0.68). Of the 45 correlations 

producing results that deviated from the hypothesis that G/C- 
and A/T-ending codons should be anti-correlated, 43 involved ar
ginine (n = 12) or leucine (n = 35) codons. This result is consistent 
with the previous study (LaBella et al. 2019) and may be associated 
with the large number of degenerate codons encoding arginine and 
leucine, leading to more opportunities for poor codon–tRNA pairing 
(Duret and Mouchiroud 1999; McVean and Vieira 2001).

Second, we explored the factors that shape translational selec
tion on codon usage by identifying features that correlate with the 
S-value (dos Reis et al. 2004), which is a measure of translational 
selection (Supplementary Table 6 and Fig. 5) We examined the 
role of metabolic niche breadth for both carbon and nitrogen 
using a PGLS analysis. Previous work has shown that intrinsic 
factors, such as gene composition, drive metabolic niche breadth 
(Opulente et al. 2024). We did not find any association between 
genome-wide levels of selection on codon usage and carbon 
(P = 0.966) or nitrogen (P = 0.579) niche breadth (Supplementary 
Table 6). This suggests that translational selection on codon usage 
is not specific to generalist or specialist yeasts. Species with high 
S-values greater than 0.85 can metabolize between 2 (Ogataea 
pini) and 16 carbon sources (Cyberlindnera nakhonratchasimensis; 
Supplementary Table 1). Similarly, species with S < 0.25 can me
tabolize between 3 (Martiniozyma abietophila) and 13 carbon 
sources (Blastobotrys peoriensis; Supplementary Table 1).

We tested associations between translational selection on co
don usage and other genomic features. This includes factors 

Fig. 2. pPCA of the 59 RSCU values of 1,154 yeast strains from 1,051 species. To derive the patterns and covariance of codon usage throughout the 
subphylum, a pPCA was conducted to determine their relationships. A pPCA was used to take into account the nonindependence of biological traits due to 
phylogeny. The results demonstrated that PC1, which explains 63.56% of the variation, was driven primarily by differential usage of G/C- and A/T-ending 
codons between species. PC2 explained 11.96% of the variation and differentiated the Serinales and Dipodascales orders. The Lipomycetales species at 
the top left corner, Dipodascopsis tothii, is driven by TTG, CTT, CTA, CTG, AGT, TCA, and TCT codons.
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previously associated with selection on codon usage, such as GC3 
content, genome size, and tRNA-ome size (dos Reis et al. 2004; 
LaBella et al. 2019). We found positive and significant correlations 
between the S-value and tRNA-ome (P-value ∼0) size but not with 
genome size (P = 0.534; Fig. 3). Interestingly, both genomic tRNA 
pool and genome size appeared to serve as lower-bound to high le
vels of translational selection. Genomes with low levels of transla
tional selection (S < 0.05) were limited to genomes with small 
genomic tRNA pools. Conversely, high levels of translational se
lection were found across the genome and tRNA pool size spec
trum. The results for synonymous GC3 content were similar to 
findings in previous studies that suggest the highest levels of 
translation selection occur at intermediate GC3 content (∼50% 
GC; LaBella et al. 2019).

We also found significant correlations between S-value and 
genome assembly metrics (number of contigs, N50), BUSCO me
trics (number of BUSCOs, complete, single, fragmented, and miss
ing), and the number of coding sequences (Supplementary 
Table 6). We found a positive correlation between S-value and 
N50 (P = 0.000143) and between S-value and the number of 
BUSCO genes (P-value ∼0), but we found a negative correlation be
tween S-value and the number of coding sequences (P = 0.00193: 
Fig. 4). To further explore the role of all the features identified in 
pairwise comparisons, we built additive regression models for 

all possible combinations of tRNA pool size, genome size, N50, 
number of BUSCO genes, and total number of coding sequences 
(Supplementary Table 7). Based on both AIC and BIC criteria, the 
best-fitting PGLS model included all five variables. This result sug
gests that either genome assembly quality biases the estimates of 
selection on codon usage or underlying genomic features that 
make assemblies more difficult to assemble also impact selection 
on codon usage. Interestingly, we find that the number of protein- 
coding sequences is also negatively correlated with the N50 
(P = 4.40E−12; Supplementary Table 6). These correlations could 
indicate that large genomes with a low gene density are harder 
to assemble and exhibit less translational selection on codon 
usage. This hypothesis is supported by research that has shown 
that lower levels of selection associated with low effective popula
tion size can lead to larger genomes (Petrov 2002). Our results and 
this model suggest that low levels of selection in this scenario ap
ply to both synonymous and nonsynonymous changes.

Avoidance of CGN codons associated with 
arginine tRNA changes
Certain patterns of RSCU values warranted further examination, 
such as the observation that the CGN codons exhibited extreme 
avoidances in multiple clades (Fig. 1). Avoidance of CGN has pre
viously been detected in other fungi, including one yeast 

a b c

Fig. 3. Analysis of 1,154 yeasts reveals a significant association between selection on codon usage bias and tRNA but not with average GC3 content or 
genome size. a) PGLS of S-value and tRNA size revealed that there was a significant positive correlation (P-value ∼0, slope = 0.00029314). Multiple species 
in different orders exhibit a wide range of S-values at lower tRNA sizes. Species in orders Dipodascales, Serinales, Saccharomycetales, and 
Phaffomycetales tended to exhibit higher levels in S-value with increased tRNA size. b) PGLS of S-value and the average GC content in the third position of 
the codon that is synonymous were not correlated (P = 0.1037, slope = 0.04464). However, visualization suggests a nonlinear relationship in which the 
highest levels of translational selection occur at intermediate GC3 content. c) There was also no association between genome size (log value) and the level 
of translational selection (P = 0.53407, slope = 0.010563).

a b c

Fig. 4. Selection on codon usage is positively correlated with standard measures of genome completeness but not with the total number of protein-coding 
sequences predicted in a genome. a) Species with larger numbers of BUSCO-annotated genes also had higher levels of translational selection (PGLS, 
P-value ∼0, slope = 0.0003072). b) Species with higher-quality genome annotations (measured by N50) also exhibited higher levels of translational 
selection (PGLS, P = 0.00014272, slope = 3.54E−08). c) Unlike the association between the S-value and the number of BUSCO annotations, the total number 
of coding sequence annotations was negatively correlated with translational selection (PGLS, P = 0.001934, slope = −1.11E-05).
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mitochondrial genome, Eremothecium gossypii (Carullo and Xia 
2008). This extreme bias against CGN led us to investigate the ar
ginine tRNAs. In the results generated from tRNAscan-SE, the ar
ginine tRNAs demonstrated a notable characteristic primarily in 
the Saccharomycodales. In the Hanseniaspora clade, all but 3 spe
cies (H. singularis, H. valbynesis, and H. smithiae) are predicted to be 
missing the necessary tRNAs to decode CGN codons. However, all 
the Hanseniaspora had predicted tRNAs for AGN codons with an ex
treme abundance of tRNA-UCU anticodons. The tRNA-UCU antic
odons can complementarily base-pair with the codon AGA and 
AGG through wobble base pairing, which could explain the ex
treme preference for codon AGA demonstrated in the RSCU heat
map (Fig. 5a) and the low preference of CGN and AGG codons. As 
noted previously, three Hanseniaspora species (H. singularis, H. val
bynesis, and H. smithiae) were annotated with a tRNA copy of 
tRNA-CCG. The presence of this tRNA is particularly interesting 
as these species are in the fast-evolving lineage (FEL), which has 
historically experienced significantly higher rates of mutations 
and gene loss (Steenwyk et al. 2019). The outgroup to the 
Hanseniaspora clade, Saccharomycodes ludwigii, is the only species 
in Saccharomycodales with multiple predicted isotypes to decode 
CGN codons. Previously reported Saccharomycodales mitochon
drial genomes (Wolters et al. 2023) were also analyzed for tRNA 

genes using tRNAscan-SE (Supplementary Table 8; Figshare). 
The only mitochondrial arginine tRNA was tRNA-UCU, which de
codes AGA and AGG. This eliminates the possibility that a mito
chondrial tRNA is exported to alleviate the nuclear deficiency.

An alternative hypothesis to the degeneration of tRNA genes is 
that tRNA-scan incorrectly described the CGN-decoding tRNAs as 
pseudogenes. We obtained the sequences for all tRNA isotypes 
predicted to decode CGN codons regardless of their reported score 
or predicted isotype (Supplementary Table 9). All the 
Hanseniaspora have a tRNA with an ACG anticodon (decoding 
CGT), but the predicted isotype is either lysine, histidine, glycine, 
or arginine. Similarly, there are an additional 20 Hanseniaspora 
species that have predicted tRNAs with a CCG anticodon (decod
ing CGG). These are all predicted to have a histidine or glycine iso
type. To determine why tRNA-scan predicted a mismatch 
between codon and tRNA, we used tRNAviz (Lin et al. 2019) to com
pare the Hanseniaspora sequences to the Saccharomycotina refer
ence. The alignments of the tRNA sequences revealed positions 
that were similar and divergent from the consensus sequences 
(Fig. 5). The Hanseniaspora tRNAs with a CCG anticodon diverged 
from the consensus and S. ludwigii at the conserved position 
29:41 in the anticodon stem of the tRNA. There is a predicted mis
match here between a G and U base. Previous investigations in S. 

a

b

c

d

Fig. 5. Loss of CGN-decoding tRNAs in the Hanseniaspora and avoidance, but not complete removal, of CGN codons. a) The phylogenetic context tRNA 
genomic content and corresponding RSCU for arginine codons in Hanseniaspora species and representative species from Phaffomycetales (top—aqua) and 
Saccharomycetales (bottom—blue). All 4 CGN codons are underrepresented in Hanseniaspora (RSCU < 1), while the AGA codon is highly overrepresented 
(RSCU > 1) with the mean Hanseniaspora value being 5 out of 6. Three Hanseniaspora species have a hypothesized CGG-decoding tRNA, but their tRNA-scan 
scores are marginal. b) Comparison of the annotated CCG and ACG anticodon-containing tRNAs and pseudo-tRNAs compared to the rest of the 
Saccharomycotina. The darker shaded locations indicate positions that are divergent from the reference sequence shown in the middle. c) The total 
number of arginine codons that were identified in 5 transcriptomes in 2 Hanseniaspora species. The majority of identified codons were AGN, but there were 
still CGN codons detected in the mRNA expression data. d) The evolutionary history of conserved arginine positions (80% across Saccharomycotina) in 
orthologous genes that are also conserved within the Phaffomycetales (top), Saccharomycodales (middle), and Saccharomycetales (bottom). CGN codons 
are rare overall at conserved positions. At positions where the ancestral codon was likely CGT, the vast majority of these positions evolved to AGA (134/ 
137). Overall, there were only 4 sites out of 1,404 that retained CGT across the Saccharomycodales.
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cerevisiae found that tRNA with variants in this location is asso
ciated with tRNA decay and maturation dynamics (Payea et al. 
2020), and no tRNA modifications have been described at this loca
tion (Suzuki 2021). The Hanseniaspora tRNAs with an ACG anti
codon diverged from the other sequences at positions 2:71 
(mismatch) and 50:64. The mismatch at position 2:71 is located 
along the acceptor stem, which has been shown to physically 
interact with the arginyl-tRNA synthetase in S. cerevisiae 
(Delagoutte et al. 2000). This position has also been shown to be 
a positive identity element for the arginyl-tRNA synthetase in bac
teria (Giege and Eriani 2023). The change at position 50:64 is along 
the T-arm. The T-arm is not required for tRNA function, suggest
ing changes in this region may be neutral (Krahn et al. 2020).

Additionally, many Hanseniaspora genomes have lost the tRNA 
adenosine deaminase (TAD) genes, which include homologs that 
have been shown to modify the wobble position arginine tRNAs 
with an ACG anticodon (decoding CGT codons; Wolf et al. 2002;
Supplementary Table 10). The enzyme encoded by TAD1 is found 
in 9 of the 24 (38%) Saccharomycodales species, a fraction that is 
significantly lower than across the rest of the yeast subphylum 
(1065/1130 or 94%, χ2 with Yates’ continuity correction P < 2.2e 
−16) or when compared to the Saccharomycetales (134/135 or 
99%, χ2 with Yates’ continuity correction P < 2.2e−16). The enzymes 
encoded by TAD2 and TAD3 form a heterodimer (Dance et al. 2001). 
In the Saccharomycodales, 21 out of 24 yeasts (88%) have both com
ponents, which is comparable to the rest of the subphylum (963/ 
1130 or 85%). This tRNA modification enzyme complex modifies 
the wobble position (A) to inosine (I) to allow for better wobble pair
ing (Wada and Ito 2023). While additional evidence would be re
quired to demonstrate that the Hanseniaspora TAD genes modify 
arginine tRNAs, this loss further narrows down possible explana
tions for how these species decode CGN codons.

While the CGN codons are rare in the Hanseniaspora species 
without a predicted tRNA (mean RSCU across all CGN of 0.177), 
they are not completely absent. If the tRNAs were completely non
functional, we would expect that genes containing CGN codons 
would be untranslatable, leading to their extinction or elimination 
of CGN codons. To determine if transcripts containing CGN co
dons are expressed, we conducted RNA-sequencing of H. occidenta
lis var. occidentalis and H. uvarum cultured in a rich glucose 
medium (Figshare; GenBank). We then counted the total number 
of arginine codons in the expressed genes. The majority of argin
ine codons in the transcripts were AGA (mean 76% across sam
ples). The CGN codons only comprised 14% (mean across 
samples) of the total arginine codons. At the level of transcripts, 
37% of genes expressed contained no CGN codons. Of the remain
ing transcripts that did contain CGN codons, the median number 
of CGN codons was 4, and the mean was 7.7. Most of the CGN co
dons are concentrated into a few transcripts, with 1% (258 of 
22,498) of the transcripts containing more than 20 CGN codons. 
We investigated the 20 transcripts with the most CGN codons by 
BLASTing (tblastx) against the nonredundant protein database 
(Supplementary Table 11). Twelve transcripts had high similarity 
to Saccharomycodales genomes but not protein sequences, sug
gesting that they are either noncoding transcripts or previously 
unannotated protein sequences. The remaining eight sequences 
had partial matches to previously reported Saccharomycodales 
protein-coding genes. The sequence with the highest percent 
identity to a known gene matched the FLO1 gene, which encodes 
a flocculation protein from H. uvarum. The relatively high number 
of CGN codons in this gene (62 codons) may be due to the previ
ously characterized extended tandem repeats in this gene 
(Bidard et al. 1995). The low average percent identity (55%) of 

these 20 transcripts to known genes suggests they are not likely 
to be complete translated mRNA sequences. As a comparison, 
we also analyzed 20 randomly chosen transcripts with no CGN 
codons. In this case, 18 of the 20 translations had high similarity 
(average of 91%) to previously characterized proteins in the 
Hanseniaspora. Only 2 sequences showed no significant similarity 
in the BLAST database. This suggests that the CGN-containing 
transcripts from our sequencing experiment are not protein- 
coding mRNA transcripts.

Our analysis indicated that CGN codons are also generally 
avoided, albeit to a lesser degree, in Phaffomycetales and 
Saccharomycetales, the 2 orders most closely related to the 
Saccharomycodales. To examine if the Saccharomycodales are 
evolving away from CGN codons compared to their relatives, we 
compared conserved arginine codon positions. These positions 
were identified in the 1,403 conserved orthologs used to determine 
the Saccharomycotina phylogeny. Positions were required to be 
arginine in 80% of all the sequences and the same codon 80% of 
the time within each order. This allowed us to examine 1,404 con
served arginine positions in 1,400 orthologs (Figshare Repository). 
We then determined the most parsimonious ancestral codon 
across the orders. In ∼85% of the positions, the inferred ancestor 
was AGA. In only 1 conserved position did we infer a change 
from AGA to CGT in the Saccharomycodales. In positions where 
CGT was the ancestral codon, the CGT codon was retained in 
only 3 positions, while 134 transitioned to AGA. We also con
ducted this analysis with positions that were conserved at a lower 
threshold (60%) and found similar results (Supplementary 
Table 12). This analysis suggests that, in conserved arginine posi
tions, the Saccharomycodales have repeatedly switched codons 
from CGN to AGN. The change from CGN to AGN requires 2 base 
pair mutations in 6 of the 8 possible ways to go from CGN to AGN.

Collectively, our analysis found that the extreme avoidance of 
CGN codons in Hanseniaspora was likely associated with the accu
mulation of mutations in the CGN-decoding tRNAs. The transcrip
tomics data suggests that transcripts containing CGN codons are 
rare, with over a third of transcripts containing 0 CGN codons. 
This phenomenon may be associated with the loss of DNA repair 
and cell cycle genes previously observed in this group (Steenwyk 
et al. 2019). This scenario resembles the hypothesized situation 
leading to the CTG codon reassignment in 3 orders. In the “tRNA 
loss driven codon reassignment” model of CTG codon reassign
ment, loss of function mutations in tRNAs is the driving factor 
in codon reassignment. The CGN tRNAs appear to have accumu
lated several mutations, making them unrecognizable to 
tRNAscan-SE (Kollmar and Muhlhausen 2017). An alternative hy
pothesis is that codon reassignment is driven by “codon capture,” 
in which a codon is driven to near extinction before changes in 
tRNAs (Osawa and Jukes 1989). Additional work is needed to test 
the expression or modification of the CGN tRNAs in Hanseniaspora.

Conclusions
The Saccharomycotina exhibits vast diversity in their codon usage 
and genomic tRNA content. Each order has evolved distinct codon 
usage patterns—including codon reassignments—that are suffi
ciently divergent to classify yeasts into their order using RSCU 
alone. Many forces shape the codon usage of Saccharomycotina, 
including mutational bias, genomic tRNA pool, and overall gen
ome content. Similar to previous studies (Landerer et al. 2018; 
LaBella et al. 2019; Wint et al. 2022), we find that the genomic 
tRNA pool serves as a lower bound for the amount of translational 
selection acting on codon usage—small pools can exhibit a range 
of S-values. In contrast, large pools exhibit mostly high S-values. 
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We also find that the highest levels of translational selection oc
cur at an intermediate GC content of the third codon position. 
Interestingly, we find that the N50, BUSCO number, and transla
tional selection are all positively correlated with each other and 
negatively correlated with the total number of predicted protein- 
coding sequences.

Unlike previous studies, we identified an association between 
genome assembly and architecture and our measure of transla
tional selection. Our additive model found that 5 variables 
(tRNA pool size, genome size, N50, number of BUSCO genes, and 
total number of protein-coding sequences) explained the most 
variation in S-value. The role of genome assembly features could 
be technical or biological. Lower-quality genomes may be missing 
genes and are more likely to be mis-annotated. This could lead to 
unintentional bias in the codon evaluation due to missing genes or 
tRNAs (Whibley et al. 2021). Conversely, biological genome fea
tures, like high GC content (Chen et al. 2013), repetitive regions, 
presence of introns, heterozygosity, and genome size (Jauhal 
and Newcomb 2021) can result in lower-quality genome assem
blies. Many of these features, like GC content and genome size, 
have previously been found to be associated with codon usage 
bias (dos Reis et al. 2004; LaBella et al. 2019; Cope and Shah 
2022). Therefore, the improved model fit associated with adding 
features like N50 and BUSCO may be associated with genome fea
tures we did not capture in our model.

Our analysis also uncovered an extreme avoidance of the 
CGN arginine codons in the Saccharomycodales. This was 
associated with a widespread predicted loss of function in the 
Hanseniaspora tRNAs, which decode CGN codons. Despite this ob
servation, RNA-sequencing data identified several transcripts rich 
in CGN codons. However, whether these transcripts result in ami
no acids or the CGN tRNAs are expressed within the cell remains 
to be seen. Overall, the tRNAs that decode CGN codons have accu
mulated multiple mutations that may impact their function. The 
Hanseniaspora have also generally lost the Tad1 enzyme, and 3 
have lost the ability to form the Tad2/Tad3 heterodimer—these 
enzymes are involved in modifying tRNAs to increase wobble 
base-pairing (Wolf et al. 2002; Delannoy et al. 2009). The evolution 
away from CGN codons, the accumulation of mutations in the 
CGN-decoding tRNAs, and the loss of the TAD1 genes all support 
the hypothesis that many Hanseniaspora species have a signifi
cantly impaired ability to decode CGN codons.

Our analysis of codon usage bias in the Saccharomycotina re
vealed diverse codon usage biases, widespread selection on codon 
usage, and an extreme avoidance of CGN codons in an order that 
has potentially lost the tRNAs to decode CGN codons. Given the di
versity in codon usage, the subphylum will likely be critical in an
swering outstanding questions in the field of codon usage. The 
Hanseniaspora may allow us to observe codon reassignment in ac
tion. The various species with incredibly large and very small 
numbers of tRNA genes may help us answer questions about 
the role of tRNA copy number and sequence variation in regula
tion. Finally, as we learn more about the ecology of these yeasts, 
we may be able to identify life history traits that impact selection 
on codon usage.

Data availability
The Y1000+ data can be obtained from the project website (http:// 
y1000plus.org) or the associated Figshare repository https://doi.org/ 
10.25452/figshare.plus.c.6714042. The Figshare project (https:// 
figshare.com/projects/Genomic_factors_shaping_codon_usage_ 
across_the_Saccharomycotina_subphylum/187236) contains the 

raw random forest model data, the assembled transcriptomes 
from the Hanseniaspora, the RSCU for all coding sequences in the sub
phylum, the conserved arginine analysis, and the mitochondrial 
tRNA analysis. The Hanseniaspora RNA-sequencing data have been 
deposited in BioProject PRJNA1144926, accessions SAMN43045963, 
SAMN43045964, and SAMN43045965.

Supplemental material available at G3 online.
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